Journal of

The Chemical Society,

Chemical Communications

NUMBER 11/1975

4 JUNE

Formation of CrO_2^{2+} in the Oxidation of Chromium(II) by Molecular Oxygen

By ROBIN M. SELLERS*† and MICHAEL G. SIMIC

(Hahn-Meitner-Institut für Kernforschung Berlin GmbH, Bereich Strahlenchemie, 1 Berlin 39, West Germany)

Summary Cr^{2+} reacts with molecular oxygen with a rate constant of $(1.6 \pm 0.2) \times 10^8 l \text{ mol}^{-1} \text{ s}^{-1}$ to give a complex, CrO_2^{2+} , with λ_{max} 245 and 290 nm, $\epsilon = 7800$ and 3200 l mol⁻¹ cm⁻¹, and which is long lived when $[Cr^{2+}] \ll [O_2]$.

CHROMIUM(II) is rapidly oxidised by molecular oxygen according to the stoicheiometry in equation (1).¹ The

$$4Cr^{2+} + O_2 + 4H^+ = 4Cr^{3+} + 2H_2O$$
 (1)

final product of the reaction is known¹ to be $[Cr(OH)_2Cr]^{4+}$, although the mechanism of its formation remains uncertain.^{1,2} We have studied the reaction by pulse radiolysis.

Pulse radiolysis of aerated aqueous solutions containing 10^{-2} M Cr³⁺ + 0.5M Bu^tOH produced the spectra shown in the Figure. Following the pulse there was a first order build-up, and then a much slower decay to a plateau. Under these conditions the hydrated electrons produced in the radiolysis of water, reaction (2), (concentration ca. 2 imes 10^{-6} M) rapidly reduce Cr³⁺ to Cr²⁺, reaction (3), which in turn reacts with O₂, reaction (4). Bu^tOH was added to scavenge the hydroxyl radicals and convert them into unreactive ButO·O· radicals. The pseudo-first-order buildup of absorption was linearly dependent on $[O_2]$ (2.6–13 \times 10^{-4} M), but independent of [Cr³⁺] (2-10 × 10⁻³ M) and pH $(2\cdot 6-4\cdot 3)$, and is attributed, therefore, to the formation of the product of Cr²⁺ and O₂. A value of $k_4 = (1.6 \pm 0.2) \times$ $10^8 \, l \, mol^{-1} \, s^{-1}$ was calculated from the pseudo-first order rate constants measured. As a check on this $k_{\rm A}$ was also estimated by a competition method using benzoquinone. This $H_2O \longrightarrow e^-_{aq}, OH, H, H_2, H_2O_2, H^+$ (2)

$$e^{-}_{aq} + Cr^{3+} \rightarrow Cr^{2+}$$
(3)

$$Cr^{2+} + O_2 \rightarrow CrO_2^{2+} \tag{4}$$

gave $k_4 = (1.9 \pm 0.3) \times 10^8 \,\mathrm{l}\,\mathrm{mol}^{-1}\,\mathrm{s}^{-1}$ taking $k[\mathrm{Cr}^{2+} + \mathrm{benzoquinone}] = (3.2 \pm 0.3) \times 10^8 \,\mathrm{l}\,\mathrm{mol}^{-1}\,\mathrm{s}^{-1}$. The par-

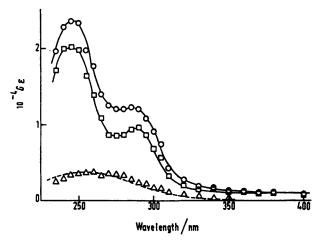


FIGURE. Spectra of transients produced by the pulse radiolysis of aerated solutions of 10^{-2} m $Cr^{3+} + 0.5$ m Bu⁴OH, pH = 3·4, dose = ca. 500 rad/pulse. (O) measured 50 μ s after the pulse; (\Box) 4·5 ms after the pulse (spectrum of CrO_{3}^{2+}); (Δ) difference spectrum, and (---) spectrum of Bu⁴O·O· radical taking $G = 2\cdot8$, from ref. 4.

† Present address : Research Department, Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire GL13 9PB. tial decay of absorption noted at longer times is probably due to the disappearance of Bu^tO·O· radicals. In support of this it was found that the difference of the spectra at 50 μ s and of the plateau at 4.5 ms was of the same shape and magnitude (taking G = 2.8) as an authentic Bu^tO·O· radical spectrum.⁴ The product of the reaction Cr²⁺ and O₂ has, therefore, λ_{\max} 245 and 290 nm, ϵ 7800 and 3200 l mol⁻¹ cm⁻¹, respectively, assuming it is formed with a yield of $G = 2 \cdot 8.$

The spectrum measured at 4.5 ms is assigned to the species CrO_2^{2+} . The reaction Cr^{2+} and O_2 cannot be an electron transfer resulting in O2-, or its protonated form, HO2 $[pK_{a}(HO_{2}) = 4.88^{4}]$ because (i) the spectrum is substantially different from that of either O_2^- or $HO_2^{,5}$ and (ii) the observation of a competition between O_2 and benzoquinone for Cr^{2+} implies that the product of reaction (4) is unreactive with benzoquinone, while O_2^- transfers an electron to benzoquinone with $k = 9.8 \times 10^8 \,\mathrm{l}\,\mathrm{mol}^{-1}\mathrm{s}^{-1.6}$

Using the a.c. conductivity technique no post-pulse change in conductivity was found at pH 2.6-4.3 and hence reaction (4) is not accompanied by loss or uptake of protons.

No decay of CrO₂²⁺ was detected. Indeed a permanent drop in the photomultiplier current was observed in these solutions at wavelengths near 260 nm, where CrO₂²⁺ absorbs intensely, and it seems that the species is quite long lived under the conditions of our experiments. Earlier workers^{1,2} have found no evidence for a long-lived intermediate such as CrO_{2}^{2+} probably because under their conditions ([Cr^{2+}] \gg $[O_2]$ reaction (5) occurs. Formation of the ultimate product, $[Cr(OH)_2Cr]^{4+}$, then presumably takes place

$$CrO_2^{2+} + Cr^{2+} \rightarrow CrO_2Cr^{4+}$$
(5)

through further reduction of the peroxy intermediate, CrO_2Cr^{4+} , by 2 equiv. of Cr^{2+} followed by protonation.

(Received, 18th February 1975; Com. 201.)

- ¹ R. W. Kolaczkowski and R. A. Plane, Inorg. Chem., 1964, 3, 322.
- ² M. Ardon and G. Stein, J. Chem. Soc., 1956, 2095; M. Ardon and R. A. Plane, J. Amer. Chem. Soc., 1959, 81, 3197; J. A. Laswick and R. A. Plane, *ibid.*, p. 3564. ³ R. M. Sellers and M. Simic, to be published.

 - ^A M. Sinic, P. Neta, and E. Hayon, J. Phys. Chem., 1969, 73, 3794.
 ^b D. Behar, G. Czapski, J. Rabani, L. M. Dorfman, and H. A. Schwarz, J. Phys. Chem., 1970, 74, 3209.
 ^c R. L. Willson, Trans. Faraday Soc., 1971, 67, 3020; M. Simic and E. Hayon, Biochem. Biophys. Res. Comm., 1973, 50, 364.